Exercises

Factor out the greatest common factor from each polynomial. See Examples 1 and 2.

1.
$$12m + 60$$

2.
$$15r - 27$$

3.
$$8k^3 + 24k$$

4.
$$9z^4 + 81z$$

5.
$$xy - 5xy^2$$

6.
$$5h^2j + hj$$

7.
$$-4p^3q^4 - 2p^2q^5$$

9.
$$4k^2m^3 + 8k^4m^3 - 12k^2m^4$$

8.
$$-3z^5w^2 - 18z^3w^4$$

10. $28r^4s^2 + 7r^3s - 35r^4s^3$

11.
$$2(a+b) + 4m(a+b)$$

12.
$$6x(a+b) - 4y(a+b)$$

13.
$$(5r-6)(r+3)-(2r-1)(r+3)$$
 14. $(4z-5)(3z-2)-(3z-9)(3z-2)$

15.
$$2(m-1) - 3(m-1)^2 + 2(m-1)^3$$
 16. $5(a+3)^3 - 2(a+3) + (a+3)^2$

16.
$$5(a+3)^3 - 2(a+3) + (a+3)^2$$

- 17. Concept Check When directed to completely factor the polynomial $4x^2y^5 8xy^3$, a student wrote $2xy^3(2xy^2-4)$. When the teacher did not give him full credit, he complained because when his answer is multiplied out, the result is the original polynomial. Give the correct answer.
- 18. Concept Check Kurt factored $16a^2 40a 6a + 15$ by grouping and obtained (8a-3)(2a-5). Callie factored the same polynomial and gave an answer of (3-8a)(5-2a). Which answer is correct?

Factor each polynomial by grouping. See Example 2.

19.
$$6st + 9t - 10s - 15$$

20.
$$10ab - 6b + 35a - 21$$

21.
$$2m^4 + 6 - am^4 - 3a$$

22.
$$15 - 5m^2 - 3r^2 + m^2r^2$$

23.
$$p^2q^2 - 10 - 2q^2 + 5p^2$$

24.
$$20z^2 - 8x + 5pz^2 - 2px$$

Factor each trinomial, if possible. See Examples 3 and 4.

25.
$$6a^2 - 11a + 4$$

26.
$$8h^2 - 2h - 21$$

27.
$$3m^2 + 14m + 8$$

28.
$$9y^2 - 18y + 8$$

29.
$$15p^2 + 24p + 8$$

30.
$$9x^2 + 4x - 2$$

31.
$$12a^3 + 10a^2 - 42a$$

32.
$$36x^3 + 18x^2 - 4x$$

33.
$$6k^2 + 5kp - 6p^2$$

34.
$$14m^2 + 11mr - 15r^2$$
 35. $5a^2 - 7ab - 6b^2$

35
$$5a^2 - 7ab - 6b^2$$

36.
$$12s^2 + 11st - 5t^2$$

37.
$$12x^2 - xy - y^2$$

38.
$$30a^2 + am - m^2$$

39.
$$24a^4 + 10a^3b - 4a^2b^2$$

40.
$$18x^5 + 15x^4z - 75x^3z^2$$
 41. $9m^2 - 12m + 4$

42.
$$16p^2 - 40p + 25$$

43.
$$32a^2 + 48ab + 18b^2$$

44.
$$20p^2 - 100pq + 125q^2$$

45.
$$4x^2y^2 + 28xy + 49$$

46.
$$9m^2n^2 + 12mn + 4$$

47.
$$(a-3b)^2-6(a-3b)+9$$

48.
$$(2p+q)^2 - 10(2p+q) + 25$$

49. Concept Check Match each polynomial in Column I with its factored form in Column II.

(a)
$$x^2 + 10xy + 25y^2$$

A.
$$(x + 5y)(x - 5y)$$

(b)
$$x^2 - 10xy + 25y^2$$

B.
$$(x + 5y)^2$$

(c)
$$x^2 - 25y^2$$

C.
$$(x - 5y)^2$$

(d)
$$25y^2 - x^2$$

D.
$$(5y + x)(5y - x)$$

 $\textbf{50. } \textit{Concept Check} \hspace{0.2cm} \textbf{Match each polynomial in Column I with its factored form in Column II.} \\$

(a)
$$8x^3 - 27$$

A.
$$(3-2x)(9+6x+4x^2)$$

(b)
$$8x^3 + 27$$

B.
$$(2x-3)(4x^2+6x+9)$$

(c)
$$27 - 8x^3$$

C.
$$(2x+3)(4x^2-6x+9)$$

Factor each polynomial. See Examples 5 and 6.

51.
$$9a^2 - 16$$

52.
$$16q^{2} - 25$$

53.
$$x^4 - 16$$

54.
$$y^4 - 81$$

55.
$$25s^4 - 9t^2$$

56.
$$36z^2 - 81y^4$$

57.
$$(a+b)^2-16$$

58.
$$(p-2q)^2-100$$

59.
$$p^4 - 625$$

60.
$$m^4 - 1296$$

61.
$$8 - a^3$$

62.
$$27 - r^3$$

63.
$$125x^3 - 27$$

64.
$$8m^3 - 27n^3$$

65.
$$27y^9 + 125z^6$$

66.
$$27z^9 + 64y^{12}$$

65.
$$2/y^3 + 1232^4$$

68.
$$(b+3)^3-27$$

67.
$$(r+6)^3-216$$

68.
$$(b+3)^3-21$$

69.
$$27 - (m+2n)^3$$

70.
$$125 - (4a - b)^3$$

71. Concept Check Which of the following is the correct complete factorization of $x^4 - 1?$

A.
$$(x^2-1)(x^2+1)$$

B.
$$(x^2+1)(x+1)(x-1)$$

C.
$$(x^2-1)^2$$

- **D.** $(x-1)^2(x+1)^2$ 72. Concept Check Which of the following is the correct factorization of $x^3 + 8$?
- **A.** $(x+2)^3$

B.
$$(x+2)(x^2+2x+4)$$

C.
$$(x+2)(x^2-2x+4)$$

D.
$$(x+2)(x^2-4x+4)$$

Relating Concepts

For individual or collaborative investigation (Exercises 73–78)

The polynomial x^6-1 can be considered either a difference of squares or a difference of cubes. Work Exercises 73-78 in order, to connect the results obtained when two different methods of factoring are used.

- 73. Factor $x^6 1$ by first factoring as a difference of squares, and then factor further by using the patterns for a sum of cubes and a difference of cubes.
- 74. Factor $x^6 1$ by first factoring as a difference of cubes, and then factor further by using the pattern for a difference of squares.
- 75. Compare your answers in Exercises 73 and 74. Based on these results, what is the factorization of $x^4 + x^2 + 1$?
- 76. The polynomial $x^4 + x^2 + 1$ cannot be factored using the methods described in this section. However, there is a technique that enables us to factor it, as shown here. Supply the reason why each step is valid.

$$x^{4} + x^{2} + 1 = x^{4} + 2x^{2} + 1 - x^{2}$$

$$= (x^{4} + 2x^{2} + 1) - x^{2}$$

$$= (x^{2} + 1)^{2} - x^{2}$$

$$= (x^{2} + 1 - x)(x^{2} + 1 + x)$$

$$= (x^{2} - x + 1)(x^{2} + x + 1)$$

- 77. Compare your answer in Exercise 75 with the final line in Exercise 76. What do you notice?
- 78. Factor $x^8 + x^4 + 1$ using the technique outlined in Exercise 76.

Factor each polynomial by substitution. See Example 7.

79.
$$7(3k-1)^2 + 26(3k-1) - 8$$

80.
$$6(4z-3)^2+7(4z-3)-3$$

81.
$$9(a-4)^2 + 30(a-4) + 25$$

82.
$$4(5x+7)^2 + 12(5x+7) + 9$$

83.
$$m^4 - 3m^2 - 10$$

84.
$$a^4 - 2a^2 - 48$$

Factor by any method. See Examples 1-7.

85.
$$4b^2 + 4bc + c^2 - 16$$

86.
$$(2y-1)^2-4(2y-1)+4$$

87.
$$x^2 + xy - 5x - 5y$$

88.
$$8r^2 - 3rs + 10s^2$$

89.
$$p^4(m-2n)+q(m-2n)$$

90.
$$36a^2 + 60a + 25$$

91.
$$4z^2 + 28z + 49$$

92.
$$6p^4 + 7p^2 - 3$$

93.
$$1000x^3 + 343y^3$$

94.
$$b^2 + 8b + 16 - a^2$$

95.
$$125m^6 - 216$$

96.
$$q^2 + 6q + 9 - p^2$$

98.
$$216p^3 + 125q^3$$

97.
$$64 + (3x + 2)^3$$

100.
$$100r^2 - 169s^2$$

99.
$$(x + y)^3 - (x - y)^3$$

101. $144z^2 + 121$

102.
$$(3a+5)^2 - 18(3a+5) + 81$$

103.
$$(x+y)^2 - (x-y)^2$$

104.
$$4z^4 - 7z^2 - 15$$

106. Geometric Modeling Explain how the figures give geometric interpretation to the formula $x^2 + 2xy + y^2 = (x + y)^2$.

Factor each polynomial over the set of rational number coefficients.

107.
$$49x^2 - \frac{1}{25}$$

108.
$$81y^2 - \frac{1}{49}$$

109.
$$\frac{25}{9}x^4 - 9y^2$$

110.
$$\frac{121}{25}y^4 - 49x^2$$

Concept Check Find all values of b or c that will make the polynomial a perfect square trinomial.

111.
$$4z^2 + bz + 81$$

112.
$$9p^2 + bp + 25$$

113.
$$100r^2 - 60r + c$$

114.
$$49x^2 + 70x + c$$